EXCEPTIONAL CASE MARKING, THE MINIMALIST PROGRAM, AND THE ASPECT PHRASE

Verner EGERLAND

0. Introduction

In the following pages, I will discuss the account of Exceptional Case Marking (henceforth ECM) given in the framework of the Minimalist Program (MP; cf. Chomsky 1995 and Branigan 1992). I will argue that at some crucial points the minimalist analysis can be simplified if we assume an Aspect Phrase along the lines suggested by Borer (1993) and Arad (1995). Borer (1993) made use of the concept of delimitedness, proposed and defined first by Tenny (1987), and assumed that the Asp node is the locus of an aspectual feature [+ delimited]. Delimitedness in Tenny’s account is the aspectual notion underlying the Affectedness Constraint; the essence of her proposal was that only predicates expressing event which are delimited by the internal argument are subject to this constraint.

The idea turns out to be fruitful, as we shall see, also when applied to a set of data completely different from those which it was originally intended to explain in Tenny (1987) and Borer (1993). The present paper is organized as follows: in (1) I

1 For discussion and useful criticisms on previous versions of this and related work, I am grateful to Kjell-Åke Gunnarsson, Maria Rita Manzini, Christer Platzack, Peter Taylor, and the audience of the Grammatik i Focus meeting in Lund, February 1996. Remaining errors are of course my own.

2 The claim that an aspectual node is syntactically projected has been made by a variety of scholars; cf. Emonds (1985), Tenny (1987), Belletti (1990), Uraigereka (1993), and Egerland (1996) among others. As aspectual relations are indeed relevant for the interpretation of a linguistic expression, an Aspect projection would seem justified in the same way as a Tense projection, on a purely intuitive basis. In other words, it seems licit to assume that the aspectual content of a representation must meet conditions of the conceptual-intentional interface, or the Logical Form.
will briefly present the MP analysis for Exceptional Case Marking; in (2), I will consider some problems which arise with this analysis; these were originally pointed out, though not resolved, in Braunmüller (1992).

1. Case Theory in the Minimalist Program

In Government and Binding Theory, structural Case is assigned under government in three contexts illustrated below as (1) (nominative assignment to Spec I from Infl), (2) (accusative assignment to Compl from V), and (3) (accusative assignment to the specifier of a small clause from V):

(1) IP
 /
 Spec DP
 /
 Infl
(2) V'
 /
 V Compl
 / DP
(3) V'
 /
 V SC
 / Spec
 / DP

Chomsky (1995) abandons head government and assumes that structural Case is checked in syntax. Case checking takes place in a Spec head relation in AgrSP, for nominative, and AgrOP, for accusative.
It is assumed that the checking of nominative takes place in overt syntax, before Spell-Out, and the checking of accusative in covert syntax. As for ECM, there appear to be two possibilities of restating (3) in terms of the MP:

1. The ECM subject is Case checked in the specifier of an Agr head inside the nonfinite small clause:

 \[
 \begin{align*}
 (6) & \quad V' \\
 & \quad V \quad SC = AgrOP \\
 & \quad Spec \quad AgrOP \\
 & \quad DP(O) \quad AgrO \\
 & \quad PredP
 \end{align*}
 \]

 Clearly this involves assuming that the small clause hosts inflectional material, contra Stowell's (1981) definition. (6) also states that structural Case is checked in an agreement projection inside the nonfinite predicate clause without involvement of the matrix V. In pre-minimalist frameworks, this claim has been advanced for different contexts and on different grounds: Guasti (1992) and Cardinaletti & Guasti (1992) held that expletive pro in the infinitival complement of perception verbs is licensed by an infinitival Agr node; Junker & Martineau (1992) argued on the basis of accusative with—infinite constructions in Middle French that the ECM subject receives structural Case in a functional projection in the nonfinite clause and not from the matrix V under government.
2. The alternative is (7), where the accusative marked ECM subject checks Case by moving into an Agr projection above the ECM verb. DP(O) is assumed to take this step in covert syntax. (7) is the analysis proposed by Chomsky (1995) and Branigan (1992).

(7) AgrOP
 \[Spec \]
 DP(O), AgrO' VP V' Spec SC

Let us now look at the theoretical and empirical implications of (7).

2. Covert Movement to AgrOP and Binding into Adjuncts

The analysis in (7) gives rise to one immediate problem. In a surface structure such as (8), the ECM subject is not in its basic position, which is to the right of the infinitive, nor in its final position, into which it moves covertly as indicated in (9):

(8) Sp-Out: \[I [VP believe [SC Johni to have [VP arrived ti]]] \]

(9) LF: \[AgrOP Johni ... [VP ... [SC ti to have [VP arrived ti]]] \]

Thus, the MP analysis of ECM implies that the noun moves half way before Spell-Out, and makes a second step at LF. The reasons for this are not straightforwardly obvious. The matter is discussed at length by Chomsky (1995) who assumes that the ECM subject has to stop in the intermediate position illustrated in (8) for the need to check a strong feature on an infinitival Infl node. As no Case feature is actually checked on the DP in the infinitival Spec I in (8), the movement is apparently un egoistic, and the issue thus bears on the interpretation of the concept of Greed and the formulation of Last Resort, the reader is here referred
to Chomsky's discussion (Chomsky 1995; pp. 257, 269, 280, and elsewhere). Below I will present an alternative solution that is compatible with a strong formulation of Greed, in the sense that DP moves only in order to check its own features.

On the other hand, (7) has at least one argument in its favour: the idea that ECM subjects move to a matrix Agr projection as illustrated in (7) explains why ECM subjects apparently can c-command into adjunct clauses. Consider some of this evidence (the examples are from Branigan 1992, 58, 65; see also his references):

(10) The DA proved Bill and Mary, to be guilty during each other’s interrogations.

(11) Mary helped Tom and Jerry, pick pockets by causing a distraction at each other’s parties.

(12) *His critics admitted him, to have been innovative after Stravinsky’s death.

In (10)/(11), the ECM subjects must be high enough in the structure to c-command into the adjunct clauses as they can bind the anaphors inside them, thus satisfying principle A of Binding Theory. In (12), the R-expression is obviously c-commanded by the ECM pronoun him. As a result, coreferentiality is excluded as a violation of principle C of the Binding Theory. Consider the LF structure (13).

The adjunct clauses in (10)-(12) right-adjoin to VP. The ECM subject is obviously lower than VP at Spell-Out but higher in LF, as indicated in (13). As binding relations for MP are checked in Logical Form (cf. Chomsky 1995), (10)-(12) are all explained on the basis of (13).

3 Although some of my English informants do not share Branigan’s judgements on all of the examples given below, I will accept them as they stand throughout this paper. The following discussion will not be concerned with the empirical issue but only with the theoretical implications of the analysis.
3. The Affectedness Constraint in ECM and AspP

There is however a problem with Branigan's account that remains unresolved. The effects shown in (10)-(12) seem to be clear only when the matrix predicate is affecting\(^4\). (14)-(16) contrast with (10)-(12) above (from Branigan 1992, 58, 59):

(14) *The audience believed Bill and Mary, to have committed the crime during each other's speeches.

(15) ?? Mary saw Tom and Jerry, pick pockets from the other side of the room at each other's parties.

(16) His critics wished him, to have been innovative after Stravinsky's death.

In (14)/(15), the ECM subjects Bill and Mary and Tom and Jerry cannot bind the anaphor inside the adjunct. ECM constructions involving believe and see thus

\(^4\) For the notion of affectedness, see Anderson 1979, Jaeggli 1986, Tenny 1987, Guasti 1992, Egerland 1996, among many others.
contrast with the ones above (10)/(11) formed with prove and help. Likewise, in (16) the R-expression inside the adjunct can be coreferential with the ECM subject him, hence, it is not c-commanded by the ECM subject. Branigan concludes (p. 66) that the evidence for covert object shift in ECM contexts is limited to those cases where the complement clause is affected by the event expressed by the matrix verb⁵.

This raises interesting problems for the minimalist account of ECM; only affected DPs move to the matrix Spec AgrO in LF and it must therefore be assumed that unaffected DPs are Case checked inside the infinitival clause. Covert raising of unaffected Dps must somehow be excluded, that is, the surface position of John in (8), now restated as (17), must be the final position (believe is a predicate of unaffectedness):

(17) I [vp believe [sc John to have [vp arrived t]]]

This conclusion is not unwelcome, as the cases where we need to assume ‘half way movement’ would be considerably reduced, covert movement of the ECM subject would apply only when it is affected by the event expressed by the matrix predicate. The difference between (11) and (15), here repeated as (18) and (19), would then be that the ECM subject moves into the matrix clause in LF in (18) but not in (19).

(18) Mary helped Tom and Jerry, pick pockets by causing a distraction at each other’s parties.
(19) ?? Mary saw Tom and Jerry, pick pockets from the other side of the room at each other’s parties.

The differences in movement follow from the aspectual distinction between event types; in (18) the phrasal complement of V is affected, in (19) it is unaffected. The contrast between (18) and (19) thus provides an argument in favour of the idea that Aspect is syntactically realized and has a direct consequence for DP movement, as recently argued by Borer (1993), Arad (1995) and others. Suppose the structure of an ECM construction is restated as (20), where only the affected ECM subject moves to Spec Asp[+del.]:

(20) . . . [AspP Asp+del [vp V [sc [vp V]]]]

⁵ Branigan signals this problem but does not account for it: ‘Only when the complement clause expresses a proposition the truth of which is affected by the event to which the matrix predicate refers is the subject of the complement clause Case-checked by undergoing covert movement to Spec-AgrP in the matrix clause.... When the matrix predicate does not affect the truth of the complement clause, the subject of the complement clause is semantically inert with respect to the various licensing and binding conditions, for reasons which remain mysterious.’ (Branigan 1992, 66).
Suppose the delimited Asp is part of the VP shell headed by admit. The infinitival clause is the complement of the same V admit. Furthermore, above AspP there is a further recursion of VP, underlined in (21). This corresponds to the light verb assumed in Chomsky (1995) or the Asp Originator of Borer (1993) and Arad (1995). The matrix subject is generated in the specifier of this head (see (21)):

If, now, the delimitedness feature triggers overt movement of him, him will move up to SpecAsp in overt syntax. From this position, it can obviously c-command down into the PP and the data follow.

In Chomsky (1995), the verb admit incorporates the light verb highest in the shell, and the correct word order is thereby derived. This account obviates the need
to assume LF movement of the ECM subject. Both the correct word order and the binding facts are derived from (21), where the surface position of the ECM subject is its final position. By this, he account has reached its goal, namely to explain why affected ECM subjects move higher than unaffected ones.

4 Conclusion

Summing up, we appear to have captured Branigan's insight that affected ECM subjects move higher in the structure than unaffected ones. The connection between height and affectedness is captured through the introduction of an Asp head that carries the crucial information of event type; movement into Spec Asp is triggered only on an affected noun. Adopting this account, we avoid the half-way movement analysis: the surface position of an Exceptionally Case Marked noun is its final position and no further movement has to be assumed in covert syntax. I consider these to be improvements of the original analysis.

References